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1. INTRODUCTION

During the last five years research has been performed under

this contract on the problem of stabilization and control of nonlinear

stochastic systems observed by noisy measurement data, and the

difficulties encountered in processing this noise-contaminated measure-

ment data to obtain accurate estimates of the state of the system.

Such problems are inherent in many Air Force system applications.

If it is possible to estimate the state of the system accurately, then

well-known classical deterministic control techniques may often be

used to give adequate system performance. This approach will

greatly reduce the complexity of the control algorithm over that

required by a truly "optimal" stochastic control policy. On the other

hand, the use of nonlinear filtering techniques in place of the simpler,

linearized or extended Kalman filters can greatly increase the accu-

racy of the estate estimates and thereby improve system performance

and alleviate divergence problems.

Investigation of the use of these nonlinear filters to help in .

the control of nonlinear dynamic stochastic systems has also been

performed. The approach has been to utilize the nonlinear filters

in a feedback loop to help obtain better estimates of state and to

use these estimates to generate "dual" control laws.

The work has been summarized each year in an interim report

and in publications in the open literature. The work done on the

contract will also be summarized below and the publications listed in

Section 3. In addition, work in progress will be described. This is

work that should lead to publications but which has not yet been

accepted for publication. Two efforts in this category are contained

in Sections 5 and 6. Lastly, but perhaps of just as much importance,

is the spill-over effect which has occurred in this basic research to

the more real-world contract-related work performed by ORINCON

Corporation. In particular, three such contract areas will be cited

below. Each of these is directly built upon the techniques, capa-

bilities, and experience gained by performing the basic research

work for AFOSR. This is covered in Section 2 which follows.
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2. SPINOFFS FROM THIS AFOSR CONTRACT

Nonlinear estimation/stochastic control techniques have been

used in two recent aerospace-related efforts. In a project for the

Naval Weapons Center at China Lake, California, ORINCON developed

an algorithm for ghost discrimination in the jammer localization problem.

The heart of this algorithm is a bank of extended Kalman filters which

tracks every possible target candidate (actual jammers and ghosts).

Then, the outputs of these filters are processed to correlate the

observed motion of the targets with tracking aircraft maneuvers.

The degree of correlation allows each target to be labeled as either

a jammer or ghost. The details of this work are contained in the

ORINCON final report on that project.

In a basic research effort for the Armament Division (DLMA)

at Eglin AFB, Florida, entitled "Tactical Missile Guidance with Uncer-

tain Measurements," ORINCON is currently developing a series of

guidance laws for short range air-to-air missiles using stochastic

control methods. To date we have developed a dual-control type law

which explicitly enforces zero expected final miss while minimizing

a combination of the trace of the final state error covariance matrix

and a standard quadratic control term. This law has been success-

fully tested with a simple planar problem. We have also developed

a new technique for propagating an approximation of the state proba-

bility density funtion forward in time while using measurements to

update this density function. We anticipate that this method will

form the basis for a new stochastic control algorithm.

In several related contracts for the Defense Advanced Research

Projects Agency, ORINCON has developed an approach and a software

test bed implementing many of the concepts defined in Publication #11.

This has been extended to not only multiple targets, clutter and multiple

sensors but even to different sensor types. The basic approach is

that of Bayesian (Gaussian sum or Gaussian mixture) nonlinear problems.

This consists of banks of Kalman filters and multiple hypothesis testing.

2 1 AORINCON



It is no exaggeration to say that this work is a direct follow-on of

the work discussed in Reference 11 which arose directly from sug-

gestions of Col. Allen Dayton when he was in AFOSR.
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3. PUBLICATIONS CREDITED TO THE CONTRACT

Work on this contract has allowed continued investigation into

the development and use of nonlinear filters in conjunction with deter-

ministic control laws. Much of the detail on the work performed

under Contract F44620-75-C-0023 is contained in the publications listed

below, all of which have been published, accepted or submitted for

publication since the beginning of this contract.

1. D. L. Alspach and R. N. Lobbia, "A score for correct data
association in multitarget tracking," an invited paper in the
1979 Proceedings of the IEEE Decision and Control Conference
in Orlando, Florida, in December, 1979.

2. D. L. Alspach, "A Gaussian sum Bayesian approach to passive
bearings-only tracking," invited paper, Proceedings of the
Office of Naval Research Sponsored Conference on Target
Motion Analysis, Monterey Naval Postgraduate School, 25-27
May 1977.

3. D. L. Alspach and H. W. Sorenson, "Approximate solutions
of the nonlinear filtering equations," invited chapter in forth-
coming book, Nonlinear Estimation and Filtering Theory: A
Status Review, E. Stear (Ed.), to be published by Marcel
Dekker.

4. D. L. Alspach, "A discussion of the relationships between
the dual goals of stochastic control," An International Journal
of Computers and Electrical Engineering, 4:1, January 1977.

5. D. L. Alspach, "A stochastic regulator using a certainty equiva-
lence control with a nonlinear filter for processing hard-limited
data," Information Sciences., Vol. 13, 1978.

6. L. L. Scharf and D. L. Alspach, "Nonlinear state estimation
in observation noise of unknown covariance," International
Journal of Control, 1978.

7. L. L. Scharf and D. L. Alspach, "Nonlinear state estimation
in observation noise of unknown covariance," Proceedings of
the 1976 Joint Automatic Control Conference (West Lafayette,
Indiana, July 27-30, 1976).

8. D. L. Alspach, "Nonlinear filters in feedback control,"
Proceedings of the Sixth Symposium on Nonlinear Estimation
Theory and Its Applications, San Diego, California (September
1975).
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9. D. L. Alspach, "A certainty equivalence control with a non-
linear filter in the feedback loop," Proceedings of the 1975
IEEE Symposium on Decision and Control, Houston, Texas
(December 10-12, 1975).

10. D. L. Alspach, "A stochastic control algorithm for systems
with control dependent plant and measurement noise," An
International Journal of Computers and Electrical Engineering,
2:4, November 1975.

11. D. L. Alspach, "A Gaussian sum approach to the multitarget
identification-tracking problem," Automatica, Vol. 11, pp.
285-296 (August 1975).
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4. PUBLICATIONS SUMMARIES

Following are brief summaries of the work contained in the

publications listed in the previous section of this report.

The multitarget tracking problem is defined in Publication #1

as that of taking a number of measurements obtained from several

sensors and determining track estimates for any targets that are
"heard" by these sensors. In the real world environment the mea-

surements are cluttered by random noise. In these situations, it

is difficult to determine precisely which target (if any) corresponds

to each measurement. Typical problems which arise with tracking

algorithms include: too few tracks are formed; too many tracks are

formed (false tracks); and, inaccurate position, course, and speed

estimates are reported. The above difficulties are often the result

of incorrect allocation of data to individual tracks. Algorithms, while

etimating the motion of a given target, inadvertently mix in clutter

and/or measurements from another target.

In order for a correct allocation to be made, we must have

an effective scoring formula; i.e., some means of determining how

likely a given assignment of data is. To be effective, a scoring

formula must produce (on the average) a better score for correct

assignments than for incorrect assignments. Information useful in

the scoring process includes a priori intelligence data (such as initial

target locations) , models of target motion, models of the transmission

channel, and expected moments of clutter for the sensor gain setting

being used. Basically, the score is derived from the residuals which

come out of the processing of a batch of data with the extended

Kalman filter. This is used to evaluate the likelihood of potential

tracks. Although "likelihood" has a useful intuitive meaning, we use

the term to mean the probability density function p(X) of the track X.

The expected cost of a given assignment is derived with the theory

of extremals being used to obtain the expected cost of adding a

clutter point in a track.

6 ORINCON
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In Publication #2, a specific application of the use of Gaussian

sums to the bearings-only target motion analysis problem was pre-

sented at the Naval Postgraduate School in Monterey. This invited

paper was published in the Proceedings of the conference, the main

theme of which was bearings-only target motion analysis.

A summary/review paper (Publication #3) was prepared as an

invited chapter of a text on nonlinear estimation, edited by Dr. E.

Stear, now Chief Scientist of the Air Force. The paper is entitled

"Approximate Solutions of the Nonlinear Filtering Equations" and the

book will be entitled Nonlinear Estimation and Filtering Theory: A

Status Review. The work done on the contract to date including that

in many of the above publications is summarized in this review chapter,

as well as work by other workers in the field. Due to Dr. Stear's

heavy commitment of time to his duties in working for the Air Force,

this book has not yet been published. For this reason this paper is

attached as an appendix to this final report.

A general philosophical approach to stochastic control is dis-

cussed in Publication #4 above. The method of aligning the "dual"

goals of the general optimal stochastic control as a design tool is

discussed. When the two goals are exactly aligned, the certainty

equivalence control is optimal and no additional intentional "probing"

is required. If these goals are "anti-aligned," demanding opposing

controls, the certainty equivalence control can be, locally at least,

the worst control possible. An example with this characteristic has

been discussed in Publication #4.

In Publication #5 we consider a simple example of a nonlinear

filter in a feedback loop. For this case the "dual goals" are aligned

and it is shown that the performance of the system is very close to

that of an optimal stochastic control. Since the optimal stochastic

control algorithm is very difficult to calculate, this is done by com-

paring the performance to a known lower bound. This lower bound

is found in the following manner. It is clear that there is more

7 A4AAA.A
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information about the state in a linear measurement of the state

contaminated by noise z LIN(k) than in the hard-limited version

YHL(k):

zLiN(k) = Hkxk + Vk

YHL(k) = SIGN(zLIN(k)) = SIGN(Hkxk + vk)

With the linear measurement function, the optimal stochastic control

is given by the separation theorem. It is clear that the performance

of the optimal stochastic control system with only the hard-limited

function YHL(k) available will be worse than the system with the

linear function ZLIN (k). It is shown in Publication #5 that given

only YHL(k), the performance of the certainty equivalence control

with a nonlinear filter is close to that of the optimal control system

with the better linear measurement.

In Publications #6 and #7, a new nonlinear filter was developed

in conjunction with Dr. L. Scharf of Colorado State University. This

paper considers the adaptive Kalman filtering problem where only the

measurement noise covariance is unknown. A new parallel filtering

algorithm is developed.

In Publication #8, the effect of control-dependent plant and

measurement noise on the feedback control is discussed. It is shown

that the goals are effectively aligned, but not of the same magnitude.

The use of any control action reduces the accuracy of the state esti-

mates. Thus, the effect of such control-dependent noise is to induce

"caution" on the control.

In Publication #9, the filter for processing hard-limited mea-

surement data was first introduced. In Publication #10, a filter for

state estimation in systems with state- and control-dependent mea-

surement noise was introduced. In Publication #11, Gaussian sum

filters are used in a Bayesian approach to the multitarget tracking

problem. 0.

8...A ORINCON
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5. EFFECTS OF COMBINATION OF MEASUREMENTS ON SYSTEM
STATES REFERENCING NONLINEAR FILTERING

Some recent work on this contract has been the study of cer-

tain very simple types of measurement data that can lead to states of

knowledge ( a posteriori density function) which cannot be described

by linearized filtering theory. These lead to very non-Gaussian

a posteriori density functions in the only reasonable coordinates

system possible.

The effects of n- asurements such as bearing, speed, relative

time delay and rate of change of relative time delay on state estimate

has been considered. In many systems in which radars of various

types, acoustic transducers, other satellite sensors, etc., are used

to generate measurements on one or more targets, measurements of

the above type are produced. Great difficulty can be encountered

by anyone blindly trying to apply linearized Kalman filter techniques

to this type of data. Some simple examples of how this can come

about are described below.

First, however, let us remind ourselves of the basic structure

of a discrete time extended Kalman filter. It consists of a set of

recursion relations for propagation forward in time a state estimate

and a covariance matrix. If no modeling errors occur (the nonlinear-

ities are known exactly and the noise statistics are correctly modeled)

filtering errors still occur in the application of the linearized extended

Kalman filter. In considering such filters one often performs sensi-

tivity analysis and studies of regions of validity of the linearizations

inherent in both the prediction and measurement (filtering) stages.

These techniques are well documented and will not be repeated here.

However, an even more fundamental question is "do the measurements

and dynamics even lead to a roughly unimodal, elliptically shaped

region in state space?" If a bimodal or completely non-elliptically

shaped region is given as the region with non-neghgible probability

mass from a correct utilization of the Bayesian recursion relations,

- A ,V" PA ORINCON
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one must either find a different coordinate system (where this is the

case) or give up on using a simple extended Kalman filter. First,

consider a very simple example of four states with linear system

dynamics.

[x 1 x2 x3 x4] = Ix, ,y, ]

x 1 (k+1) 1 At 0 0 x (k)

x2 (k+l) 0 1 0 0 x 2(k)

x3(k+l) 0 0 1 At x 3(k)

x4(k+1) 0 0 0 1 J x4(k)

+ Wk

Consider first the case where we have a very small amount of

dri :ing noise and continuous speed measurements. If the target was

known to be at the origin at time to, its state trajectory would be

limited to the circle shown in Figure 1. If the initial uncertainty

was the ellipse shown in Figure 1, its state would have to lie within

an annulus indicated in Figure 2 and shown more completely in

Figure 3. If this probability mass was cut by a bearing from a

sensor at location A, the a posteriori density will have non-negligible

mass as shown in Figure 4. If it is hard to imagine a state space

10 V - ORINCON
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Figure 1. Constant speed/course from center.
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Figure 2. Constant speed/course from initial ellipse.
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Figure 3.
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A
Figure 4. Bearing measurement.
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for which this area could be well defined by a Gaussian density.

But this is just what would be necessary in order to find a coordinate

system for which an extended Kalman filter would be a reasonable

filtering algorithm. It should be noted that a two-element mixture

density or Gaussian sum density might be very adequate (though

not perfect) in describing the state of knowledge indicated in Figure 4.

Also, a Gaussian density in range could perhaps be used to describe

the state of knowledge described in Figure 3. Thus, one might have

to change coordinate systems with the data accumulated and switch

from simple extended Kalman filters to Gaussian sum filters or banks

of Kalman filters to adequately process data for this very simple

situation. It should be noted that going to three dimensions would

not greatly change the character of this example.

A second type of measurement available from pairs of sensors

(LORAN, etc.) is the time delay difference between a signal arriving

at each sensor (bistatic). Thus, if two sensors--A1 and A2--are

located as shown in Figure 5, lines of constant time delay difference

are shown in Figure 6. The third dimension would be handled by

rotating these lines around the lines joining sensors A 1 and A2 .

A small amount of uncertainty is indicated in Figure 7 for a very

small negative value of time delay difference. For a slightly larger

positive time delay difference with small uncertainty, the probability

mass is shown in Figure 8. If a bearing measurement is processed

as shown the a posteriori density (the interceding area) could very

well be approximated by a single Gaussian. Thus, an extended

Kalman filter could very well be used to process this data with the

possibility that the result would be close to that obtained from an

optimal non-linear filter.

A case of slightly large positive time delay difference and

different sensor position is shown in Figure 9. In this case no

extended Kalman or linearized filters could give a reasonable solu-

tion for the real a posteriori density. Again, however, a two term
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Gaussian sum density could well be used as an adequate approximation

to the density function which would result from an optimal nonlinear

filter. Note in Figure 10 that the same effect would occur if an

a priori density (shown) was followed by the same time delay differ-

ence measurement-as in Figure 9. Thus, in these last few examples

for the same type of data, in some cases an extended Kalman filter-

ing approach could work very well and in other differing really only

in the measurement data itself, no linearized filter could give reason-

able results. Note that a linearized filter could be developed and

run on a number of test cases with good results without even

encountering these problems. Due to the robust character of the

Kalman filter structure, when such a filter was used in a real system

where both types of "good and bad" data types were encountered,

this filter might be used without the realization by the users that in

certain cases greatly sub-optimal results were being obtained. For

example, in Figure 9 one would probably obtain an a posteriori

Gaussian density near one of the two possible intersections of the

hyperbola and the bearing.

These examples indicate the kind of danger that is routinely

encountered in implementing linearized filters without great insight

* to the nature of the measurements and dynamics of the system

under investigation. In both of the above examples, one might

"feel" that the problem is obvious and a careful patch-up of a linearized

system could be made by a good analyst. A number of cases observed

in the real world and in publications lead us to believe that even this

is rarely the case. However, one more example will be shown where

the same effect is seen but the result is not so a priori obvious.

Consider a case such as LORAN where not only the time delay differ-

* ence is measured but also the derivative of time delay difference is

available as a measurement.

For this case it can be seen that this measurement is bilinear

in the x and y rate state variables:

21,v - ORINCON
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R1 (x,y) - R2 (x,y)
Z -

C

x gI(x,y) + Yg 2 (X,y)

c

c = speed of light.

It is possible to look at contour plots of gl(x,y) and g 2 (xy) in

Figures 11, 12, and 13.

We will consider the case where we also have some knowledge

of the maximum speed of any target of interest for simplicity.

= .2~ .2 s
S =2 + i 2 < S m amax

2S 2S
max max

max c c max

One can define the a posteriori density of a target in x,y space for

a given measurement value. For example, if the measurement is near

zero and we know that from the measurements on past data that the

target velocity is defined by:

k= S max' 0, z = 0

For a defined measurement uncertainty the a posteriori distribution

is shown in Figure 14 as a contour plot and in Figure 15 as a three-

dimensional plot. Note the fact that two distinct areas are defined.

For a measurement of .1 of Zma x ' four distinct ridges are obtained

as shown in Figure 16. When this is raised to .8 of the maximum

possible, an annulus is formed as in Figure 17 as a contour plot and

in Figure 18 as a three-dimensional plot. Note if the derivative of
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time delay is measured to be .5 times the maximum and a time delay

from Figure _ is measured, the two distinct areas shown in Fig-

ure 19 are obtained. Note this could again be approximated by a

two-term Gaussian sum density. The same type of effect is seen

for this case (k = max, jr z 0) in Figure 20 for doppler difference

of . 1 of the maximum possible and the same time delay difference

as Figure 19.

For nearly the same geometry but for a target with

T z max t 10% uncertainty

kz 0 ± 10% uncertainty

we obtain quite different results. Thus, if the measurement

z Z 0

the a posteriori density is shown in Figure 21 as a contour plot and

in Figure 22 as a three-dimensional plot. When z goes to .05 of the

maximum the contour plot becomes as shown in Figure 23 and at z of

. 1 of the maximum we obtain Figure 24 as a contour plot or Figure 25

as a not too well executed (due to problems with the three-dimensional

package) three-dimensional plot.

When any of these are combined with a bearing or time delay

difference hyperbola we again obtain cases where a set of Gaussian

sum densities could give a quite reasonable approximation to the

a posteriori density. However, it is hard to believe that a simple

modification to linearized filtering theory could lead to an adequate

solution to the filtering problem posed by the intermixing of this

type of data. This is true even though these measurements are

very simple and mimic those found in a number of real-world Air

Force applications. There is clearly a need to consider the use of

non-linear filters in cases where the measurements are a function

of range or speed in conjunction with bearing measurements.
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6. OPTIMAL SEARCH PATTERNS FOR MULTIPLE TARGETS

A problem of great interest to the Air Force is that of detecting

the presence of multiple targets in clutter from several sensors of

varying capability. Each sensor could have different probability of

detection/probability of false alarm characteristics as a function of

settable (or controllable) parameters. Each sensor could also have

the region of measurement space covered by a controllable function

perhaps with constraints.

One approach to this problem is considered here.

Let p(x) = probability density function for location

of targets

u(x) = search effort density

Then the detection function to be maxdmized by u(x) is given by:

D(u) =fX [1 - e - u (x) px) dx

where X is the surveillance space to be searched.

Let U total maximal search effort available to themax
system

Then, we must satisfy the constraint

fX u(x) dx Urea x
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The problem is to select an admissible search plan u*(x)
which maximizes D(u) over a specified surveillance region. Or:

Maximize: D(u)

subject to f u(x) dx Ua

Theorem: For the problem:

Maximize D(u)

pi subject to f u(x) dx < Umax

there exists a real number X > 0 (also known as the Lagrange multi-

plier) such that:

1. u*(x) = -£ZnX + £np(x) on IR~x

= 0 otherwise

and
2. f u*(x) dx = U

~max

where the region JRx is defined by

]R = {x En p(x) - £n X)
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Therefore, to obtain a complete solution to our problem, we must

first find a X* > 0 for which

u*< max

fRu,* (x) dx = Uma

x

and also determine the search region IR . The search region IR isx x

dependent on the choice of X*.

Unfortunately, the task of determining X* from the above

integral equation is a non-trivial one.

Explicit analytical expressions can be derived for X* and IR x

if the density p(x) is Gaussian. In this case:

p(x) = c exp (-2'x11 x -1_
P

where

x = mean

P = covariance matrix

c = normalizing constant

Consider the function:

Zn p(x) - £n X

Znc- n X - jx
P

42
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The search region is then defined by:

R x) = {xltnp(x) - in X - 0)x

- 1 II - II 2- < + 2 n in

Define the effort function U(X) by

U(M) =fIR u (x) dx

x(A)

where IR (A) is as defined above and
x

uA(x) £n p(x) - n A

- j llx_-.l 2  n+ n
p

Thus,

U(X) = {n - IIx--II2 _ dx
x(

Let A denote the volume of the search region; that is,
s

As  f dx .

x

Then, for n-dimensional state vectors,

A f dzs 
ISI

z
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with

z S S(x-X^)

IR ={zt Iz1 ~+2 Zn c

where matrix S is defined by

STS = -1

and IS I =determinant of S

1 F P

And,

n/2

s Is)

where

W= surface area of an n-dimensional unit sphere

( 2 -,)fn/
2

Using the above expression for A.

U (A) Z n (c As - Iz 1 2dz

z
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n+2 n+ n+2
Un(2) n / 2  2 = _ (2) 2 -

()n/2 n+2

Isi

n+2 n+2

WA (2) 2
n £n

IS I n (n+l) C1

The useful case of search in a plane (i.e., latitude and

longitude) corresponds to n= 2 , and

U(A) = 710102 J 2£n1

7= a 1 2  P - 2 [Zn (2Tr Ol1 2 1F P 2) ]2

where

p =correlation coefficient for the Gaussian density.

Solving the algebraic equation

max
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gives the value of optimal i:

in j2 X* 1  2  7-p = ± max

Thus,

+ _ 
m ax

2nAJ1-- 2 2 Cl2X * 
2e7

2 T , % 1 - p 2 al 2

Corresponding optimal seatch pattern u * (x) is given by

U*(X) i n p(x) - in )* x E ]R
x

u*(x) = 2 + max- _ max
P x.,,T :

where

= ~ IIx < 2 Umax

Similar search patterns are obtained for higher dimcnsional scarch

spaces.
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Three intuitively satisfying conclusions follow from the above

search patterns:

1. In a limited resource search effort, the optimal search is

confined to a closed and bounded region;

2. the search effort is concentrated around our best

knowledge of the existing position of the target. The

search effort gradually decreases away from the

estimated location; and

3. as the available search effort U is increased, themax .

optimal search region is expanded to include more

surveillance area.

It is easily seen that the effort density is non-negative

(>0) over the restricted search region IR . To see this, considerX

for x c IR
x

u
2 MAX

p 7T 1o c1 2

But,

2 2 maxx-5I - 2 2
p C1 1 2

u*(x) Z! 0

Using u*(x) given above the corresponding detection proba-

bility D(u*) can now be computed.
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-u(x)
-u* e p (x) dx

x

u (x) = - Z.flX + kXn p W) on JR

-o0 outside IRx

Thus,

D (u*) 1 -fR exp(-Znp(x) - nX) p(x) dx -f p W) dx

D(u*) =fIR p(x) dx - * fI
x x

ce Icxe P dx X* fR dx

x x

n/e dz 2 [2 C~i

S IR YI is!
z
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2 
n/ 2

n 2 n-1 drX, 2 ZnIS I e r d -J n IS I
max

"2 c
w h e r e r 2 2 - -

cn-
2  n-2

D (u*) - (2) 2 2 t-sy X 2 Wn]S r 2d y*~nI~ n ISI
, m ax

4

In n=2 (Planar search)

D (u*) = c 2 rr e-Y dy - X* F2 --w T
s1 J r J 2 Li ISI

r-< max

4

r max

D(u*) - Lc ea4 X 2 Zn c
IsI 0 Is!

-7 2c 1 e X [2 in
jSI L L LS

IS I J
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Note that as u max o , ) + 0 and D(u*) t 1. Thus, in the

event that unlimited resources are made available to the searcher,

the detection probability will approach unity.

Extensions of these results to multi-target search situations

are not straightforward. Multiple targets in the system can be

categorized into three types:

1. Existing known targets

2. New targets

3. False targets

One must resort to acceptable approximations to be able to

obtain closed form solutions to the search problem. The case of

known multiple targets can be treated by using such approximations.

Extensions of results are not so easy for cases in which either new

targets are entering the system or there is a possibility of false

targets (such as clutter or other large objects). In these cases

one must further postulate acceptable forms of probabilistic

description of these events or one must use empirical definitions

from past knowledge of these events.

Next, we will consider the case in which search patterns

are found for known multiple targets.

Suppose that there are m targets in the surveillance area.

The location probability density function for the ith target is given

by the a posteriori density function p(xilz), when z denotes all

the available information. For the sake of notational simplicity, this

a posteriori density will be denoted by p(x). The probability

density function for locating a target in the surveillance space can

then be considered as a mixture or Gaussian sum density given by

S-ORINCON
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m

p(x) = Eii Pi(x)

i=1

where m = number of targets in the system

a. = probability that the i t h target is selected.1

In the absence of a priori knowledge a. is taken to be 1/m, thusI

giving equal probability for any target to be selected.

The maximum detection probability search pattern for the

multiple target system is then given by:

u*(x) = £n p(x) - £n A * x c IR x

= 0 x¢fIR

where

R x {xIp(x) - A,1

and X* is given by

j u*(x) dx =U max

x

To indicate the degree of difficulty in solving the integral

equation to compute A*, consider the case in which there are two

targets in the system (m=2). Assume that

Pi(x) (ci exp- I[x -i;1) i = I, 2

01 ORINCON
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where

C. = _ _ _

Also assume that p1 =P 2 =P' and

2

Let

UM(X)U u(x) dx

x

where

U Wx = £Zn D(X) - nr X on IR
x x

As before, define a new variable

z = S (x-~

where

ST S -1

and let
-~(-~ - ~ T P-1

f (z) e T + e2

e!S

and dz SIdx

where :S detcrminant of S.
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Then the integral U() requires evaluation of the following integral:

f n (fMz)) dz

where

IR = z1-1')z 12 + Zn (1+al 2  e - (  - s2 ) T Z

2 -k (2(2 Tr)n/2 x  [P inl/Z

and

al 12 e P

It is not possible to solve the above integral in a closed form.

[See , page 00, eq. 00.1

Thus, approximations are required to simplify the integer

even for the simplest case of two Gaussian targets. Two situations

where simplifications are possible are:

1. The estimates x. for target location are separated suffi-

ciently, i.e., C i- i >> 1; and

.The estimates % are sufficiently close together, i.e.,
IkI <<

In the first case, the search area IR (to which the searchx

effort will be confined) can be decomposed into several disjoint

sub-regions IR i In each of these sub-regions IR the effect of
xi t*,- X.

pre rnce of targets other than the i target can then be ignored

3 AORINCON
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and closed from expressions for * and the corresponding u*(x) can

be determined.

In the second case, the system location density can be approxi-

mated by a single unimodal target which dominates the search and the

solution described for the single target case remains valid.

Under the assumption that

I -- ^ 1Xi  x. >>1
J

it is possible to select a X* > 0 such 'that the total search region

IR can be decomposed into disjoint subregions IRx.

Define f.(x) {Pi(x)/p j (x) }

i;ej

If p(X) has a form which decreases at least as fast as exp(-7'1x11 ),
as llxJI increases, then

f.(x) << 1

for all x E lR j a neighborhood of k Using this approximation for

widely separated targets it is now possible to define IR in the fol-
Xj

lowing way. (Only Gaussian densities are considered.)

Let , be the derived value of the constant approximating the

Lagrange multiplier. Let x* be such that

f.(x*) min f.(x)I x F - R x i

Define

IRx x 1c exp(-2 j} l ) >
xc. -1) T- lf (x*)
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Thus it is seen that

IR C IR
x. X

3

since x E IR x implies that

c( j (1 + f.(x*)) 

1 2

c. e • * (1 + fj(x)) ->

Sp(x) 2 !

Using the results of the single-target case:

U(M) J u(x) dx = u(x) dx

1

n 2
T,= 2 TA 2

)j
Let B. r a 1Ps

i. n 2B.

A
I + f.(x*)
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Then,

U (A) = In + a J 2

-a(knA) 2+ 2b inA + c

where

n

a=

n

b

n

i =1

= -b± b 2 a(c-U

and

u*(x) = b vf~b'-a(c-t: )n + T (.x) - n (I+fx )
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At this time numerical studies of this approach to optimal

search patterns implying optimal sensor allocation are being

performed.
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I. INTRODUCTION

Many physical systems are described most appropriately by mathe-

matical models which take into account the stochastic influences which

act upon the system. Furthermore, the behavior of the system can

seldom be observed in such a manner that its state is known precisely

at each time. Instead, the system is observed through the measurement

of variables which yield incomplete information and which contain

unknown or random errors. In general one must estimate, from these

noisy data, the state of the system and, frequently, take some type

of "control" action based on these estimates.

The problem of estimating the state of a nonlinear stochastic

system from noisy measurement data has been the subject of consider-

able research interest during the past few years but, although a

great deal has been published on the subject, the basic objective of

obtaining a solution that can be implemented in a straightforward

manner for specific applications has not been satisfactorily realized.

This is manifested by the fact that the Kalman filter equations [1,2],

which are valid only for linear, gaussian systems, continue to be

widely used for nonlinear, nongaussian systems. Of course, continued

application has resulted in the development of ad hoc techniques, dis-

cussed below, that have improved the performance of the Kalman filter

and which give it some of the characteristics of nonlinear filters.
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Central to the nonlinear estimation and stochastic control

problems is the determination of the probability density function of

the state conditioned on the available measurement data. If this

a posteriori density function were known, an estimate of the state

for any performance criterion could be determined. Unfortunately,

although the manner in which the density evolves with time and

additional measurement data can be described in terms of difference

(or differential) equations, these relations are generally very

difficult to solve, either in closed-form or numerically, so that

it is usually impossible to determine the a posteriori density for

specific applications. Because of this difficulty, it is natural

to investigate the possibility of approximating the density with

some tractable form.

II. THE GENERAL PROBLEM

Many formulations of stochastic control problems are possible

and have appeared in the literature. If the objective is to determine

computational algorithms, it is reasonable that attention should be

directed toward the development of control and estimation policies that

explicitly assume that events occur at discrete instants of time.

Suppose that the state vector x of the system evolves accord-

ing to the nonlinear stochastic difference equation:
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where

- n-dimensional state of the system at the time tk;

- p-dimensional control vector that acts on the system

for tk t < tkl;

k q-dimensional plant random noise vector that acts on

the system for tk 5 t < tk+l;

The random noise sequence* , !I, ... , w) wk is assumed

to have a known probability distribution p(w k) such that the w.

are independent between sampling times [i.e., p(o, !1  ...- , =

P(Wo), P(Wl), .... p(Wk) for all k]. Sequences having this character-

istic will be referred to as white-noise sequences. The initial

state 20 is also considered to be random variable with a known

distribution and is taken to be independent of the plant noise.

The behavior of the plant (1) is observed imperfectly through

measurement quantities ik that are related in a prescribed fashion

to the state but which contain random errors.

:k= ,xk, y ) k = 0, 1, ..... N. (2)

Throughout this work a vector or scalar with an algebraic super-

script (k) will mean the total array of such vectors which have

occurred at all times up to and including tk'

6V V . ORINCON
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where
w k- m-dimensional vector of known measurement data at the

time t

k r-dimensional measurement noise vector contaminating

the data at tk -

k
The noise sequence v is assumed to be a white-noise sequence

with a known distribution and to be independent of the initial state

and all plant noise.

The noise sequence vk and wk are taken to have zero mean and

the initial state vector to have mean x
-o

E(x) =^' E(v,,) = = 0 (3)
-0 -0O

The covariance of the white-noise sequence and defined by

E(wk wjT) = Qk 6kj E(Yv ) Y Rk 
6kj (4)

and the initial state covariance P ' is defined by:o

E ((x - )(x -o )T P1 (5)

Based on the system (1) - (2), it is possible to define the

stochastic control problem. Before doing so, it should be noted that

it has been assumed that the probability distributions for all random

variables are known. It is possible to consider a more general

problem in which the distributions are unknown. This situation has

., ,. . ORINCON
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been referred to by Bellman [3] as an adaptive control problem to

distinguish it from the stochastic problem that is being formulated

here.

The estimation of the state Xk from the data zk y can be

separated into three subproblems:

1. Filtering: estimate 4 at the present stage k
k

y = 0 using all past and current data z.

2. Prediction: estimate k at some future stage k

y < 0 using all available data at stage k+y, y < 0.

3. Smoothing: estimate 4 at some earlier stage k

y > 0 using all available data at stage k+y, y > 0.

In the absence of plant and measurement noise, the problem that

is considered below would have the following simple, deterministic
k

statement. Determine the state 4 from the measurement data zk

When stochastic effects are included in the model as in (1) - (2),

the statement of the filtering problem comes to include an element

of arbitrariness. Certainly, the basic objective is to "estimate"

the state from the data. However, the random effects in the system

model implies that redundant data must be collected in order to

minimize the noise influence on the estimate. Now, it becomes
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reasonable to define "best" estimates, thereby introducing the

arbitrariness mentioned immediately above.

In considering the question of estimating 4 from the mea-

surement data z_ it is necessary to specify the criterion that is

to be used to define a "best" estimate. However, whatever criterion

is used, the density function p( /xzk+Y) contains all of the

information that is required. In fact this density function provides

the most complete description of the system that is possible. Thus,

the estimation problem can be approached from this Bayesian viewpoint

[4,5] without specifying the criterion because one is first concerned

with determining p(x /z k ") or a valid approximation to it.
k

The Bayesian approach described below applies to all three of

the subproblems of filtering, prediction, and smoothing. The actual

calculation of the smoothing density is considerably more complicated

than the other two while the prediction density p(4/z k y) (y < 0)
follows simply from the filtering of a posteriori density p( zk

In the following discussion we will specialize to the filtering and

prediction cases and most of the research results apply to these

cases.

For systems of the type considered here the a posteriori

density function p(./ z ) provides the most complete description

possible of the so-called state vector x, which is, of course, a

random variable p(/ z k), on the other hand, is a deterministic
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function which is, in theory, completely determined by the a priori

statistics of the noise and initial state density function p(x ),

combined with the measurement data z = ()1' 2' 3' 4 )

If this function is taken as the description of the state, it

reduces to the unit impulse at the true state whenever perfect

knowledge of the state is obtained. Thus, accepting this as a

valid definition of state, it becomes necessary to obtain explicitly

the a posteriori density function or a "good" approximation to it in

order to solve both the estimation and control problems. In fact,

once this is accomplished it is possible to estimate the random

variable state 4 according to any criterion function.

While the a posteriori density provides a complete solution of

the filtering problem, it has the disadvantage that it is a function

rather than a finite-dimensional estimate. If the problem were

deterministic, the solution would be provided by the vector Ik

that satisfied the plant and measurement equations for all k.

A similar "solution" is commonly sought for the stochastic problem.

To obtain estimates jk' useful, but often arbitrary, performance

criteria are defined which lead to "optimal" estimates [6].

Examples of such criteria are the minimum mean square error,

minimum absolute deviation, maximum a posteriori, and maximum

likelihood. The Bayesian approach yields all of the informa-

tion necessary to obtain estimates satisfying any of these
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criteria so it is not necessary at this point to be more specific

about the performance criterion. However, it may be instructive to

see a mathematical statement of the estimation problem for the more

common criteria.

MINIMUM MEAN-SQUARE ESTIMATE

The estimate kl of the state x based on the measurement
k

data z is chosen so that the mean-square error

E [(4-- k)T(4_- Ik) ] is minimized. The estimate that

accomplishes the minimization is provided by the conditional mean

4k = E 1 k (6)

MAXINUM A Posteriori ESTIMATE

^MAP k
The estimate ^MkAP of the state based on the data z is

chosen so that the a posteriori density is maximized.

hMPz)= max p (~z)(7)

MAXIIUM LIKELIHOOD ESTIMATE

^ML k
The estimate ^k k of the state based on data z is

chosen so that the likelihood function X(xk.) is maximized.

= max p(Qk .) = max (8)

68 Ay ,M -.,A.. ORINCON

A

_Z w,-



MINIMUM ABSOLUTE DEVIATION

AHAD k
The estimate ^A k of the state x based on data z is

chosen so that the expected value of the absolute value of the error

is minimized.

-MAD mi K
.k - IXik - Xiklkl

Note that all of these estimates as well as many others can be

obtained from the a posteriori deviation function.

III. THE BAYESIAN APPROACH

Much of the current research on nonlinear filtering is con-

cerned with recursive formulations in which the solution for the

solution of the (k-l)th stage is used to obtain the solution for the

kth stage. Only the recursive formulation shall be considered here.

A general solution of the recursive filtering problem can be

obtained through Bayes' rule.

The major feature which distinguishes this approach from other

possible approaches is the assumption of the existence of well de-

fined a priori probability density functions for all unknown vectors

entering the plant or measurement equations. In the Bayesian

procedure the measurement data is used to modify the probability

density function of the state vector based on all previous measure-

ments and this a posteriori density function is used together with

the known dynamical plant and plant noise probability density function
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to obtain the predicted density function for the state at the next

stage. Thus the probability density function for state at stage k

based on all available measurements is calculated in a recursive

fashion.

In the Bayesian approach to determining recursive estimation

and control policies for stochastic systems one is concerned primarily

with the a posteriori density function, p(4I zk), and the one stage

predicted density function, p(4+llzk). These density functions

contain all of the information required for solution of both problems,

and can be described by a recursion relation that is useful for

obtaining recursive filters and closed loop control policies [4,5,7,8].

These recursion relations are given below:

p(izl)= P(41 k) kl = !-l .l (1

where the normalizing constant is given by:

(kIk) f(~Ikl 41(1 1) d xk, (12)

and where

P(0.-) p( O) (13)
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Utilization of (10) to (12) in conjunction with the prescribed

initial condition (13) provides the information required for the

determination of p( zk) for any k. Thus, a general solution of

the nonlinear filtering problem is available. Unfortunately, the

actual evaluation of the Bayesian recursion relations for a specific

nonlinear system is not accomplished in a trivial manner. It is to

the problem of developing computational algorithms for evaluating

(10) to (13) for specific systems that the remainder of this

discussion is directed.

When the system is nonlinear or when the noise is nongaussian,

two problems arise. First the integrations in the Bayesian recursion

relations cannot be carried out in closed-form and, second, the

moments are not easily obtained from (10). The moments are useful in

establishing practical estimation and control policies so their

determination is an important consideration. These two aspects

pinpoint the source of the difficulties involved in the determination

of estimation and control policies for nonlinear and/or nongaussian

stochastic systems when trying to apply the Bayesian method.

The densities p(kIJ) and p(Ek 1 _) can be written more

explicitly in the special case that the noise terms E and Vk

are assumed to be gaussian and to enter equation (1) and (2) in an
-1 -1

additive fashion. Then by assuming that Qk and Rk1 exist, we

can write these densities as
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P(.k-Xk)  kv exp T- ) .k - k(.k)] (14)

p (4. +1. - kw exp --1..k(_X4)1T Qk- 1 [xk+l - .. k(_.k)] (15)

Given the a priori density functions, the a posteriori density

functions p(4k1z k ) can be determined for any sampling time tk if

the integrations required can be accomplished in a closed-form. In

general, this cannot be done and suggests that some type of approxi-

mation must be considered. When only the first two moments are

known, or the initial density is nongaussian, it is common to approximate

the density as a gaussian with these first and second moments.

Another method is to linearize nonlinear problems around a known

nominal and to assume the noise is gaussian in the linearized problem.

The reason for wanting the problem in this form is well known [2]. In

this case the a posteriori and the predicted density functions are

Gaussian and the Bayesian recursion relations can be solved in a

closed form. In fact, since a Gaussian density function is completely

determined by its first and second order statistics, the functional

recursion relation reduces to a recursion relationship for these

statistics. These relations have come to be referred to as the

Kalman filter equations [1,2].
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IV. THE LINEAR CASE

In many applications of the theory a nominal trajectory in

state space is known or assumed and the nonlinear dynamical and

measurement equations are linearized about this nominal. Because

of the comparative ease of solution of this linearized problem relative

to the nonlinear one and because of its applicability in many instances,

this linear problem has received much attention. The linear version

of Equations (1) and (2) are:

x F ,~ ~(16)
-k+1 k - k -k -k+  k

=Hk k + y ; k = 0, 1, ..., N. (17)

The assumption that !k, 4 are independent white noise sequences,

both independent of 0, will be made here, but is not necessary [9].

kF Hk, and rk u are known deterministic quantities at time

and the statistics of , Y, and 20 are all defined in Section II.

If, in addition, k, Yk, and 20 are gaussian random variables,

equations (10) - (13) can be solved exactly to give:

[ P H T +

+ KI H k(19)

P = Pk' - Kk Hk P (20)
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P i' Fk P T

Pk+l k kFk + Qk (21)

5+1 =Fk _k" + rk (22)

where

E Z E(jk) (23)

E= E k-1) (24)

kp E [(~ (~ T Z k (25)

= E [( ~ J k-1] (6

and where can be any function of zk  and the a priori data and

thus can be a function of ik"

These recursion relations are exact for the Gaussian problem and

are referred to as the Kalman filter [1,2]. Several characteristics

of this filter should be noted. First, the mean of the a posteriori

density & always provides the minimum mean-square estimate for the

state. In this case of linear systems, when the a priori densities are

Gaussian, the mean provides the optimal estimate for a large class of

estimation criteria [6]. Secondly, the P matrix arising in the

Kalman filter is the covariance of the error in the estimate, and it

is independent of all measurements.

If the noise is non-Gaussian and the minimum mean-square error

estimate is desired, the Kalman filter still provides the best "linear"

estimate for state. In this case, however, estimators with smaller
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error variances are possible. This can be seen from the fact that,

in general, the variance is a function of the measurements. A simple

example showing this is given below.

Consider the scalar one stage plant:

z0 = x0 + v (27)

where both x and v are uniformly distributed on (-1, 1) with

variance a2 = 1/3. The approximation of x0 and v0 by gaussian

random variables gives:

PA(vo) = N(v O, 1/3) = exp(-l.5 v2) / 3 (28)

PA(x0) = N(xo, 1/3) (29)

PA(xOhZo) = N(x0 - z / 2, 1/6) (30)

Thus giving the linear or Kalman predicted variance of 1/6. The

exact value of a2  is plotted in Figure 1 versus z0  and the

Kalman approximation to it, a2 = 1/6, is also indicated.Kalman

With the true distribution of x0  and v0  the measurement must be

contained in the interval (-2, 2) while for the same system with

gaussian noise any measurement is possible.

For both the true and approximate cases the mean of the

a posteriori density function is ! i0" This is because the true

mean is linear in .0 for one stage. This is not true for subsequent
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stages and as a result the Kalman filter only gives the best linear

projection of the best minimum variance estimate for more than one

stage. However, as shown in Figure 1, the major problem with the

Kalman filter is that the variance calculated by it is not a very

realistic approximation of the true variance. This carries over to

the nonlinear case and has been one of the major problems of the

linearization procedure [10]. Note that in this simple example the

true variance can be from twice the Kalman estimate to zero. If

one wants to find an estimate for state, even in the linear non-

gaussian case, different from minimum variance, then the Kalman

estimate does not even represent a best linear estimate. This

simple example has been considered at length in references [11,12]

where a larger number of stages and where several approximate

density functions were compared with the true one. Other cases of

linear systems with nongaussian noise and initial states are discussed

in references 111-15]. This special case of linear systems with non-

gaussian noise definitely requires nonlinear processing of the data

in order to form optimal state estimates.
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V. APPROXLMATE SOLUTION OF THE BAYESIAN RECURSION RELATIONS

As discussed in the previous section, the only general system for

which closed-form solutions of (10) - (13) can be found is when the

plant and measurement equations are linear and the statistics of the

noise and initial state are Gaussian. Then, the a posteriori density is

Gaussian and the conditional mean and covariance are described by the

Kalman filter equations. Unfortunately, it is necessary to seek the

solution of the Bayesian recursion relations numerically for nonlinear

or non-Gaussian systems.

In essence, we are faced with the problem of evaluating multi-

dimensional integrals. Certainly, the determination of p(4Izk -l)

using (11) requires an integration. The calculation of the filtering

density p(41z k-1) using (10) is seen to require the multiplication

of two density functions. This does not represent a difficult task

other than in the storage requirements that are implied in such an

operation. However, the normalization and the determination of

moments requires integration of the product.

We shall first consider the solution of the problem from a

very basic point of view. Clearly, the a posteriori density is a

random function of the data. When a measurement realization is

available, then we have the density as a function of the state xk"

To emphasize this and to reduce the notational complexity, let us

make the following conventions. The prediction density shall be
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written as

p(" - 1 i(x) p(n) q(x n) dn (31)

Using (15), this becomes

= Jp( q(--fk( _)) dn (32)

We have renamed 4 as x and k-1 as n. The subscripts denoting

the sampling time have been suppressed since the), play no active role

in the discussion. That is, the Bayesian recursion relations have

the same form at every sampling time.

Next, the filtering density shall be rewritten in the following

manner:

p( = p(x) cTr(x) m (x (33)

where c is the normalization constant, r is the prediction density

as in (32), and m is the density of z given x. The measurement

z can be regarded as being known.

Consider the calculations required for one complete stage of

the recursion. The filtering density p is computed as the product

of r and m. Note that the calculations are started at t1 with

r equal to the a priori density p(xl). Thus, p(_jzJ) / ck is

readily formed for all k. The normalization constant is formed as

c'= J (x) -_h(x)) dx (34)
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The integration generally must be accomplished numerically. It is

immediately apparent that a considerable computational burden can

be avoided if c is not determined. If one is interested in

obtaining only the MAP estimator x , then c does not have to

be found. However, if the mean-square estimator x is desired

or if any moments of the distribution are to be computed, then an

accurate value for c is required.

After determining p, the integrand in (32) can be formed.

The prediction density r is obtained by carrying out the nonlinear

convolution indicated in (32). Again, it is generally necessary to

resort to numerical methods to determine Yr. Since v is a function

of x, the convolution implies that a large number of numerical

integrals must be computed; essentially, an integration for each

possible value of x is required.

After determining p and r, it is natural to compute moments

of the a posteriori density. As noted above, the minimum mean-square

estimate is provided by the conditional mean. The quality of the

estimate is commonly gauged by forming the conditional covariance

matrix. Conceivably, higher-order moments might also be determined as

indicators of the effect of the nonlinearities and of the deviation

of the a posteriori density from a gaussian. Of course, these are

not ensemble statistics but are associated with a specific measure-

ment realization.
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A large number of methods for the evaluation of the Bayesian

recursion relations have been proposed and studied. These methods

have the common characteristic that the calculations are performed

after defining a "grid." The grid points provide a finite collec-

tion on which approximations can be based. Obviously, these points

are contained in a finite region of state space even though the

integrations generally are carried out over infinite intervals.

Thus, the functions must be such that there is negligible probability

mass outside of the region containing the grid points. The manner in

which the grid is defined is an important consideration in the

development of an algorithm.

Let us consider an approach to the evaluation of the nonlinear

convolution (32). Suppose that a specific value x i is prescribed

for x so the integration will yield a well-defined number. The

numerical integration of (32), essentially requires that the

integral be replaced by a summation involving a discretization of

the integration-variable n. The manner in which the grid points are

defined may be accomplished arbitrarily or as in integral part of the

quadrature method. For example, in an nth-order Gauss-Hermite

quadrature, the grid points are chosen as the zeros of the nth

Hermite polynomial. Let n.j {j = 1, 2, ..., N kI denote the

N k- grid points for the variable n. Furthermore, suppose that x.

is regarded as the ith grid point for the discretization of the
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variable x into Nk points. Then, the convolution (32) is

replaced by

Nk_1
p~x~i)= c ap(nj)P( ifn)) ; - , ... N . C5

j=l

The coefficients a i  represent the weighting coefficients of the

numerical integration scheme. Clearly, if there are a large number

of grid points the storage and computational burden can be enormous,

even for present-day digital computers.

Because of the storage and computational burden implied by

solving the Bayesian recursion relations, it is natural to seek ways

in which these requirements can be reduced. Effectively, the non-

linear filtering problem can be regarded in this completely com-

putational context. In the subsequent discussion, we shall review

some the approaches that have been proposed, summarize the types of

results that have been obtained, and make suggestions for areas

requiring additional investigation.

The earliest and by far the most extensively applied approach

was motivated by the existence of the general solution for linear,

gaussian systems (i.e., the Kalman filter). In this case, a single

grid point is defined at each sampling time. Then, the system equa ions

f and h are linearized relative to the grid point. This approxi-

mation of the system itself implies that the state and measurement

perturbations are gaussian so the Kalman filter can be applied directly.
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A number of generalizations to include higher order perturbations

have been proposed. We shall discuss this class of methods in

Section VI. Since the approximations can be regarded as being most

accurate in some neighborhood of the single grid (or reference)

point, we shall refer to them as local methods. More recently, a

second class of techniques has emerged which explicitly attempt to

obtain solutions by defining a grid over the entire region containing

significant probability mass. This class shall be referred to as

global methods and is discussed in Section VII.

VI. LOCAL NONLINEAR FILTERING METHODS

Virtually the only recursive nonlinear filtering method that

has seen application to practical problems is the so-called extended

Kalman filter. In this approach, a single grid point is defined at

each stage and the system is linearized relative to this point. If

the grid point is chosen as the "best" estimate (i.e., the approxi-

mation of the conditional mean), the resulting estimator is called

the extended Kalman filter [2,10]. This is apparently the simplest

possible approach since it irvolves a single grid point and linear

equations at each sampling time. In addition, the grid point at the

kth time is obtained directly from the previous grid point and the

appropriate system equation. It is also a most crude approximation

and its validity depends heavily on the quality of the linear

approximation.
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Practical experience has demonstrated that the assumptions

inherent in the extended Kalman filter are often valid and satisfactory

results are often obtained. There are also well-known disadvantages

and difficulties associated with the application of the extended

Kalman filter. The manifestation of these difficulties is commonly

referred to as the divergence [2,10,16] problem. Divergence is said to

occur when the actual error in the estimate becomes inconsistent with

the error covariance matrix approximation provided by the filter

equations. This situation arises because of errors in the filter

model, either as a result of errors in the basic model or as a

result of the linearization errors.

Experience with the extended Kalman filter in a variety of

applications has led to the definition of a number of subproblems

that may have to be solved in order to develop a useful algorithm.

A. Filter Initialization

Before utilizing the Kalman filter, it is often necessary to

process a small amount of data to obtain reference values to be used

in the linearizations. Regardless of the manner in which it is

accomplished, the filter must be initialized with suitable values for

the estimate and error covariance matrix in order to obtain reasonable

estimates at subsequent times.

O'(
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B. Form of the Filter Model

The linearization errors can be reduced in many cases by the

form used for the system model. The choice of coordinate system can

be important [17]. Furthermore, the use of transformations [18] to

obtain models which are more easily linearized are often possible.

C. Iterative Calculations

To improve the linearizations, one can iterate through a small

amount of the data (e.g., one sample at a time) and use improved

estimates in the linearizations before reprocessing the data [QI.

D. Divergence Control

Divergence often occurs because the model does not adequately

describe the system. To compensate for model errors, the plant and

measurement noise covariance matrices or the Kalman gain matrix

directly can be increased. This has the effect of causing the error

covariance matrix to be increased and in a way to cause past data to be

discounted relative to more recent samples. A large number of methods

have been devised to compensate for model errors [e.g., 2,10,19].

E. Second Order Filter

In our Bayesian context, the use of the extended Kalman filter

implies that the a posteriori density is gaussian. This can be an

extremely poor approximation of the actual density function if all
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possible values of the state x are considered. Other local (or

pErturbative) schemes have been devised in an effort to improve the

quality of the approximation. The obvious extension [20,21] is to

consider retaining the second-order terms in the expansion of the

system functions f and h. Commonly, the assumption is made that

the a posteriori density is still gaussian even with the presence of

the second-order terms. This assumption is made in order to overcome

the "moment closure problem" which is discussed briefly below.

For the purposes of discussion, suppose that we are considering

a scalar, second-order system

= fkxk- k + W (36)

Z hkXk+ ek 2+vk (37)

Suppose at the (k-l)th sampling time that we know

E [ - 1]xk_ zk = -lk-l (38)

and

var (xk 1 _zk-l) = Pk-lIk-l (39)

The mean value E [xkizk-l1 is seen to be

o(40)
E[k, k1] Xkikl = k 'xk-Ilk- + g](kllk- +'klIk-l)
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To determine the variance, we note that

Xk- E LXkkl1 = X kk_1

2 l ' ( (41)

so

var [ k-1 q + k 1 k- (42)
rxk- = qk(1 + 2+( gk k )k-ljk- (42)

+ 2gk (fk + 2 gkXk-ljk-i) 'k-ljk-1

+ gk (vk-llk~- P~k I-)

where k1 ik-l and Vk_ 1 k-i represent the third and fourth central
given k-i k-i

moments of Xki z Thus, the calculation of var(xkl )

requires knowledge of the first four central moments of Xk 1 given

k-i For this example, the calculation of the ith moments always

requires knowledge of the 2 ith moments at the preceding time. This

implies that one must know moments of every order and is referred to

in g(tieral as the moment closure problem. To close the problem, it

is common to assume that moments of order greater than some integer

correspond with gaussian moments. For example, if the 3rd and higher

order moments are assumed to be gaussian, then for all k

V k 0 (43)

Vk = 3p2  (44)
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F. Higher Order Polynomial Expansion

The first serious attempt to eliminate the gaussian assumption

involved the use of Gram-Charlier or Edgeworth expansion [22). The

expansion is a series of polynomials which are orthogonal with

respect to a gaussian distribution and can be used to represent a

wide class of density functions. The initial use of this non-

gaussian approximation was based on a perturbative approximation.

As a consequence, it suffered from the disadvantage that a large

number of terms were required to obtain z reasonable approximation

of a distinctly nongaussian density. The behavior of the estimator

obtained from this density approximation was found to be very sensi-

tive to the quality of the approximation. When the infinite series

is truncated, as it must for practical application, the resulting

series can become negative over portions of the state space.

Consequently, the density approximation is not itself a density.

This can introduce unexpected influences into the behavior of the

estimator, particularly if the integral over the region in which the

function is nonpositive has a nontrivial value. Subsequently, other

density approximations using the Edgeworth expansion have been pro-

posed [e.g., 23,24,34]. This local method seems to be most useful when

the a posteriori density is unimodal even though it is not Gaussian.
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G. Parameter Identification

In certain cases the dynamic system, the measurement function,

or even statistics of the noise or initial state can contain unknown

and constant elements. Much of the work classified as system

identification addresses this problem which is a very special case

of the nonlinear estimation problem. Good descriptions of these

techniques are contained in references [25,26].

VIII. GLOBAL NONLINEAR FILTERING METHODS

The obvious disadvantage of the local methods stems from the

use of a single grid point on which to base the approximation.

During the past few years, several methods have been proposed which

attempt to improve the approximation by considering the density at

many points selected through the region containing nonnegligible

probability mass. These methods can be regarded as representing

specific examples of ways in which the numerical integrations

discussed in Section V can be accomplished. Some of these global

approximations are reviewed in this section.

Quite possibly, the first step toward the development of a

global method was taken by Magill [27] with a subsequent generaliza-

tion by Hilborn and Lainiotis [28]. They considered linear systems

with unknown parameters. To deal with this nonlinear problem,
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a grid was established by discretizing the unknown parameters and

by considering the resulting collection of linear filtering problems.

A global method for the general nonlinear filtering problem was

proposed by Bucy [29] when he introduced the point-mass method.

This approach was elaborated upon by Bucy and Senne [30] at the

First Symposium on Nonlinear Estimation in 1970. At this same

meeting Alspach and Sorenson [31] proposed the gaussian sum

approximation as an alternative approach. Subsequent Symposia on

Nonlinear Estimation included many extensions and saw

the introduction of other techniques. Center [32] provided a unifying

theoretical framework by considering the problem in the context of

generalized least-squares. His approach permits, conceptually at

least, the development of a countless number of approximations.

In the Second Symposium on Nonlinear Estimation, Center discussed

as specific examples the point-mass, gaussian sum, and Edgeworth

expansion approximations. Later [33], he also discussed the spline

approximation method proposed by Jan and de Figueiredo [12].

All specific global methods must provide solutions of the

following general problems.

(a) An initial grid must be defined. It is important that the

region encompassed by the grid includes the true value of the state.

In addition, the number and manner in which the grid points are

distributed within the approximation region must be defined.
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(b) A procedure must be defined for defining the grid at each subse-

quent sampling time. While the grid could be the same throughout, the

dynamic nature of the problem and the desire for computational efficiency

indicate the advisability of redefining the grid at each sampling time.

(c) Given the grid, a method must be selected for approximating the

functions and/or for carrying out the Bayes' rule calculations. The

approximation method and the grid selection method are not unrelated

and the implementation of a particular method may require interaction

between the two considerations.

Below we will show in some detail how much interaction occurs

for one of the methods in order to give the reader a feel for such

interaction in one particular case. The other methods have been applied

in similar problems and are briefly described below and described in

detail in the references.

Alspach and Sorenson [11,31,34,35] proposed approximating the

a posteriori density function by a weighted sum of Gaussian densities.

For example, a density p is approximated by the density* pa

q

Pa (X) = - .c iN , (45)
i=1

q

where the weighting coefficients a. are nonnegative and Z . = 1.
1 i=l1

*N (a,B) . (2) -n/ 2 (det B) -1 /2 exp {- + (x - q)TB- (x - a))
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This approximation is motivated by the realization that pA converges

uniformly to p for a large class of densities. Thus, the approximation

PA can be made as accurate as one wants through the choice of q. The

idea of using this type of approximation has been suggested by several

others [e.g., 13,14,15,36].

After q has been defined, it is necessary to assign values to

A A
the parameters ci' L4, pip {i = 1, 2, ... , q}. The mean values x.

represent grid points for the approximation. The selection of all of

these parameters must yield a satisfactory representation of the

a posteriori density. It is natural to formulate their determination
A

as an optimization problem. Let us choose ali LiC P., {i = 1, 2, .

so that the generalized least-squares performance index,

ELS =f[P(2) - Pa(L) ]2 dx, (46)

is minimized subject to the constraints that for all i, Q. > 0, E = I1 1

and P. is a positive semidefinite matrix. Figures 2 to 4 show the1

approximations resulting in fitting three different scalar densities

by such a direct optimization method. These densitie- contain most

of the features that can give difficulty in the various density func-

tions encountered in practice. These difficulties include discontinu-

ities, skewness, unboundedness, and the problem of converging to zero

both faster and slower than the gaussian.
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The first example that is discussed here is the gamma density

function. It is defined as:

0 for x < 0
p(x) x3 e-x  for x 0)

6

This distribution has a mean value of 4 and second, third, and fourth

central moments of 4, 8, and 72, respectively. Figure 2 shows the

result of fitting one to four gaussians to this density. Note

that in two cases several moments of the approximate gaussian sum

density were constrained to match the moments of the true density.

The bad effect on the L2 fit indicates difficulties with this and

other moment matching techniques.

The second density approximated is a uniform density function:

() 0 elsewhere (48)

The obvious symmetry was imposed on all approximate densities in order

to exactly match all odd moments. The results of fitting 2 to 5

gaussians to this density are shown in Figure 3. Note the appearance

of a"Gibbs phenomenon'on the last approximate density.

The last density approximated and reported here is a product

of two independent zero mean gaussian random variables.
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z M xy (49)

p(x) - N(x, 4) C50)

p(y) = N(x, 4) (51)

p(z) - K0 (z/4) / 4w (52)

where K0 is the modified bessel function of the second kind of order

zero. Because of the symetry of this density, all odd moments are

zero. The second and fourth central moments are:

Cy - E(z) - 16 and E(z) = 2304 (53)

This density and one, three, and five gaussian sum approximations

to it are shown in Figure 4.

The development of such approximations requires the utilization of

numerical search techniques. The approximations can be determined off line

but may require extensive calculation. This approach may not be accep-

table in many circumstances. Thus, in reference [34], an alternate sampler

method was developed and entitled the "theorem fit" approach. This is

done as follows:

1. The number of Gaussian terms in the sum, n, is chosen

based on previous experience.

2. The region (a,b) over which the density function is to be

approximated is chosen.

3. The mean values ai for each Gaussian are placed uniformly

inside (a,b).
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4. The weighting functions a are selected to be propor-

tional to the value of the density function to be

approximated at ai, and are normalized to one.

5. The value of the variance is taken to be independent

of i and is found either by:

5.1 By a one-dimensional search to minimize the L 2

error;

or

(b-a)
5.2 Is chosen such that, a -z for a prespecified

value of z.

The first approach is called the "best theorem fit" and the

second the "smoothed theorem fit"; no search at all is required in

this second method of obtaining an approximate density.

If J involves more than one region,a modification of this

technique has been used which treats each region separately and takes

the number of terms in each region to be proportional to its measure.

Such approximate densities for the uniform and gamma densities are

shown in Figures 5 and 6. In these figures the parameter z has

been chosen to be .6.

Gaussian sum densities can also be utilized to approximate

densities of greater than one dimension. In doing this it is possible

to take into account natural symmetries of the density to be approxi-

mated. For example, suppose the measurement function is given by:

4O
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z = h(x) = .1 x + (x1-x 2 ) 2 + Vk (54)

E (v .1 (55)

The measurement function is then given by

2
P(zlx I) = N(z - .lx1 + (x 1-x 2 )2, .1) (56)

or for the particular case of z equal to 1 this function is shown in

A.Figure 7(a). If the a priori mean x is zero

A- :(0)
and this is taken as the linearization point, the approximation utilized

in an extended Kalman filter for this function is shown in Figure 7(b).

A simple two-term gaussian sum shown in Figure 7(c) gives a far better

approximation to the true density and a 30-term smoothed theorem fit

density shown in Figure 7(d) captures even more of the fine details

of the original function.

Another example of using a gaussian sum density to approximate

a two-dimensional function arises in the passive bearing's only

tracking problem (reference (34]). A target is located at xk or
*?

(xk, yk)* in Figure 8(a) and is observed by a ship at location S

which measures the angle a. This geometry is shown in Figure 8(a).

The measurement function is
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z h()- tan-1 E(Yk - s en Bk)/(xk - cos ek ) ] + v k  (58)

E(v k2 2 .01 radian2  (59)

and the function P(zk/Xk) is shown in Figure 8(b). If an extended

Kalman filter linearizes this function around the most recent line

of bearing the approximate function shown in Figure 8(c) results.

This is too wide if the target is closer than the a priori estimate

and too narrow if the target is farther from the origin than the

original estimate. This feature of the approximation can lead to

"range collapse" or divergence where the estimate steps to the origin.

However, the general shape of this extended Kalman filter approxima-

tion is correct. If one linearizes about the last estimated position

which, however, happens not to lie in the measured bearing, very bad

approximations, away from the linearization point, can result. Then

one gets functions which bear little resemblance to the true mea-

surement function just as in the last example. A ten-term gaussian

sum "smoothed theorem fit" is shown in Figure 8(d). Note in Figures

8(b) and 8(d) it has been assumed that the true state cannot lie

greater than six orbital radii away from the observer. This accounts

for the cutoffs on both figures.

There are a variety of ways in which these general approxima-

tions can be utilized. For example, if the a priori density is

approximated by a Gaussian sum density with N terms, then this

defines a generalized grid in the initial state space. If the plant
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and measurement functions are linear with gaussian perturbing noise,

then the evolution of each term in the a priori gaussian sum density

is described by a linear Kalman filter. For example, in the simple

example described earlier with a scalar state and uniform initial

state density the evolution of the true density, the gaussian sum

approximate density, and a single linear Kalman filter density with

time are shown in Figure 9.

In this case only the a priori density P(xI) - n(x) needs to be

approximated by a gaussian sum, and the a posteriori density

P(xk/zk) can easily be shown to be a gaussian sum with N terms.

The more general case of non-gaussian plant and measurement

noise each approximated by gaussian sum has also been considered.

In this case the a posteriori density is also a gaussian sum but

the number of terms in the density grows with the number of stages.

This is shown in detail in reference [I1].

The more general case of a nonlinear measurement equation

(zk = hk(Xk)) is considered in reference [35]. Here, in order to

enfold the measurement z, it is necessary to multiply V(x) by

m(z-h(x)). If h is nonlinear, the product is no longer a Gaussian sum.

One approximation at this point is to linearize h(x) about each of

these grid points. Because the variance of each term of the sum

is small, the linearization must be valid only in a small region

surrounding the grid point. The extended Kalman filter can be
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applied at each grid point to obtain the means Li and covariances P

needed in the gaussian sum approximation of the filtering density

from that of the prediction density. The extended Kalman filter is

used to obtain a grid for the next sampling time and to obtain the

gaussian sum approximation of the prediction density w. Next,

using Eq. 32, the new predicted density w(x) is calculated. If the

system dynamics are linear, then this can be solved exactly and again

the predicted density is a Gaussian sum. If not, fk(x) must be

linearized about each grid point as in an extended Kalman filter and

then the next stage density is again in a Gaussian sum form. A simple

quadratic scalar example of this is taken from reference [35].

Consider the scalar system with the plant described by

xk+l - xk + xk 2+Wk (60)

k
The state xk is to be estimated from the measurement data z where

2
2k - xk +vk' k - 0,1, "' (61)

The initial state and the plant and measurement noise sequences are

independent, white, and gaussian with

E(x 1; E[(x 0  = 1 ; (62)

E(wk) E E(vk) = 0 ; (63)

98 A -" '' " V""":" ORINCON

- - * ...



E(wk) =a 2 E(vk2) . 2 (64)

The a priori mean and variance of the initial state are held at these

values for all examples presented here, although others have been

investigated. The basic parameters of the system in the present

study are the variances of the plant and measurement noise and the

relative effect of the plant nonlinearity n. These variances have

been chosen to be independent of k for clarity of presentation only.

The value of each of these parameters will be specified for each

case presented.

Results for four different filters are presented and discussed,

although not all results are included in Figures 10 and 11. When

a filter performs very badly, it may fall off the scale of the charts

and thus not be shown. The first three are filters that have been

considered previously in the literature and in which the a posteriori

and predicted density functions are assumed to be gaussian at each

stage. The first of these is the extended Kalman filter. This is

the filter most often used in practice. The second filter uses one

iteration to improve the reference values used in the linearization.

The third filter is the gaussian filter of [20), where second-order

terms are used to modify the mean and variance of the next stage

predicted and a posteriori density functions. The fourth is the

gaussiap sum filter.

A.i

29 1 -YORINCONA' Ila



The characteristics of the filtering problem depend heavily on

the position of the state variable xk with respect to the point of

symmetry of the measurement nonlinearity. When xk is near that point

(zero in this case), the ratio Xk 2/v is small and the gaussian

filters tend to diverge. As the state moves away from this point,

the measurement nonlinearity becomes increasingly more negligible

and the gaussian filters tend to perforr well. This is particularly

clear when there is no plant nonlinearity n = 0 and no plant noise

a 0. In this case the relative performance of the differentw

filters depends most strongly on the value of the state variable

and less on the particular measurement realization under considera-

tion. For this reason it was found best with a limited number of

realizations to choose the true initial value of state as a parameter

and only select the measurement and plant noise from a random num-

ber generator. This was particularly useful in the Monte-Carlo

averages, but was done in all the cases presented below.

When there is no plant nonlinearity [n = 0 in (60)], it is

impossible from the available measurement data to discriminate between

the true value of the state and the negative of that value. Thus

p(xk 1zk) should become bimodal if the value of the state is nonzero.

This is, of course, not possible for any of the gaussian filters.

When there is no plant noise or nonlinearity, the a posteriori

density can be computed exactly. Under these conditions it is

(except for a normalization constant) simply given by
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P(xkIzk) W cPxo(x0 ) Pvo(z0 - h(x0))... Pvk(zk - h(xk)) . (65)

The density function of a specific realization is depicted in Figure

10. The values of the system parameters are stated in the figure.

The gaussian sum filter provided an approximation that is indistin-

guishable from the true a posteriori density for the example. In

this case the a priori density p(x0 ) was approximated by a sum of

40 gaussians. Observe that the second-order filter provides an

extremely conservative result and estimates the state to be zero

instead of ±0.2. The extended Kalman filter tends to diverge.

Only the iterated filter performs at all satisfactorily and pro-

vides an estimate of approximately 0.2.

It is interesting that the minimum variance estimate that one

would obtain from P(xklzk ) provides an estimate that is between

the two peaks (i.e., since the conditional mean is the minimum

variance estimate). Clearly, this estimate is very conservative

and, consequently, may be unsatisfactory. A maximum likelihood

estimate would yield a value close to the true value or its

negative.

When a plant nonlinearity from (61) is included, it is possible

to distinguish between the two values and the gaussian sum filter

quickly selects the proper peak. This is shown in Figure 11 where

the value of n is -0.2. Since the state has a negative value, the

gaussian filters all perform unsatisfactorily, so only the results

0
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of the gaussian sum filter are shown. This example demonstrates the

difficulty that a maximum likelihood estimator might encounter.

It is observed that the maximum value of p(xklzk) switches back and

forth from positive to negative. Without complete knowledge of the

density function, it is unlikely that a procedure could be devised

that would reflect this behavior.

In the previously described use of gaussian sums, the gaussian

sum approximation takes the form of a number of extended Kalman

filters operating in parallel. It is easy to obtain an indication

of the computational burden that is associated with this nonlinear

filter. If q extended Kalman filters are required at each stage

of the sequence, then the gaussian sum requires approximately q

times as much effort as a single filter. The burden of a single

filter is well known [e.g., 373. The general use of parallel pro-

cessors in this problem has been considered by several authors

[38 - 41].

In some problems it makes more sense to approximate P(x /x-k -k+l)

or P(zk/xk) directly as a gaussian sum at each stage. In this case,

the number of terms in the gaussian sum approximation to the

a posteriori density grows with the number of stages. It is, how-

ever, possible to drop any term whose weighting coefficient, ai'

is negligible. It is also often possible to combine two or more

terms whose grid points from prediction fall sufficiently close

together. In this way the total number of terms in the gaussian

sum can be controlled.
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An example of this type is the vector tracking example whose

measurement density function P(zk/xk) was described earlier in Fig-

ure 8 and Equation (58).

The state vector propagates according to the linear plant

"k+ l ' k ' k=c k

and the state is observed by the scalar nonlinear measurement

function of Equation (58) where

ak  - B 0 +  (k- i)

where 0 and B are given constants. The a priori random variables

20' Vk' and yk are white, independent, gaussian random variables

and sequences.

The preceding model arises in connection with the tracking

geometry of Figure 8 where target T at the position defined x k T

•(xk yk) is undergoing a random walk in the two-dimensional state

space. The observer S is passively measuring the line-of-sight a as

it travels in a deterministic orbit around the unit circle.

Results obtained from the application of the gaussian sum

filter to a specific example are shown in Figure 12. The position

of the observer is shown by the cross on the unit orbit and the
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cross on the density function shows the true position of the target.

The a priori estimate for the initial state was taken to be

A 2 
(5

0-0 .2) 0 1

while the true value of the initial state (and all subsequent

values since there is no plant noise) was taken to be

xk = 0.5

The measurement noise has a one sigma value of 0.01 rad or about

one-half degree. The non-gaussian a posteriori filtering-density

function is seen to propagate from stage 1 to stage 9 in this figure

where a measurement is taken every 10.

In Figure 13 results obtained using the extended Kalman

filter and the gaussian sum filter are compared. The parameters

Cxk' Eyk, and Ak for a single realization are presented. The improve-

ment provided by the gaussian sum filter is striking.

A number of other interesting nonlinear non-gaussian stochastic

dynamic systems have been investigated utilizing these techniques i

in the literature, and the reader is directed there for more

details on specific problems.
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If the covariance term in the "theorem f it" method of

approximating densities is made very small, one ends up with gaussian

shaped delta functions with a weighting equal to the function value

at that point. Such an approximation is a very bad fit to the density

in an L sense but distributions and moments for such an approximation0

can be arbitrarily close to those from the exact density as the density

of the grid increases. In this way one can move from the gaussian

sum density approximation to the "point mass" approximation.

The point mass approximation was introduced by Bucy and Senne

in 1970. Bucy [29) and Bucy and Senne [30] have suggested that the error

covariance matrix be used to establish the region and the grid. Essen-

tially, the eigenvectors are used to define the principal axes. The

grid is centered at the mean value. The grid along each axis was chosen

to extend over a distance sufficient (e.g., 16 times the magnitude of

the corresponding eigenvalue) to insure that the true state is contained

within the grid region. The number of grid points is prescribed to

provide an adequate approximation. The basic method of defining the

grid is modified to suit the requirements imposed by a particular

problem. For example, when the a posteriori density is multimodal,

it is reasonable to define a grid for each mode rather than for the

entire density.
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The manner in which the grid is updated at the next sampling

time is straightforward since the system dynamics provide the mean

values and the covariance matrix for the predictor density.

Once the grid points have been established, the density func-

tions can be evaluated at each of them. These values, after being

suitably normalized, can be regarded as point masses for a discrete

approximation of the distributions. Using the point-mass approxima-

tion, the Bayesian recursion relations are readily evaluated. This

approximation is essentially equivalent to using a rectangular integra-

tion rule to accomplish the numerical quadratures.

IX. NONLINEAR FILTERING--A CRITICAL LOOK

Global nonlinear filtering is growing beyond its infancy. As

must be true for any infant, the first steps, as exemplified by

the work mentioned above, are exhilarating for those involved and

can easily lead to overly ambitious claims and unwarranted optimism.

Viewed with even a modicum of perspective, however, it becomes

obvious that much work remains before the infant will grow to

maturity. It is fun and,hopefully, worthwhile to attempt to predict

the character of the mature development and to suggest some activities

that are required to shape the development.
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The basic objective of global nonlinear filtering might be

regarded as the development of a practical computational algorithm

which will permit the determination of the a posteriori density to

any prescribed accuracy for any system. This is the achievement

of the Kalman filter for linear, gaussian systems; if it can be

accomplished for nonlinear non-gaussian systems, the achievement

would be worthy of any of the scientific titans of history. The

developments described above do provide procedures for computing the

a posteriori density for any system. But they have the practical

limitation that the computational requirements associated with

their implementation are enormous. Thus, the development of an

algorithm must be guided by the requirement of achieving compu-

tational efficiency. With the rapid development of mini-computers,

it appears that practical nonlinear filtering may be possible using

special-purpose rather than general-purpose digital computers. It

appears reasonable to consider, for example, the use of mini-

computers for parallel processing. Possibly, some of the general

ideas discussed by Korn [42) will prove useful.

Assuming that global nonlinear filtering methods will con-

tinue to require substantially more computation than local filtering

techniques, it is natural to ask and attempt to answer the follow-

ing questions. Under what conditions is it desirable and necessary

to assume the additional computational burden and utilize global

nonlinear filtering techniques? Certainly, no answer to this
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question that could be universally accepted exists at this time. How-

ever, some related considerations can be discussed.

Local filtering techniques in general and the

extended Kalman filter (EKF) in particular are looked upon

with scorn in some quarters because these approaches are "sub-

optimal." In addition, the degree of suboptimality is not readily

determined. As a consequence, it is reasonable to solve the global

filtering problem if only to provide a reference against which local

methods can be compared. However, the continued use of the EKF

must be tolerated because it has proven to provide satisfactory

results for many nonlinear systems. This is especially true when

the filter is designed to monitor the residuals and to initiate

corrective action whenever a low frequency component is observed

that implies the onset of divergence.

The success of the EKF forces a search for general circum-

stances in which this local filtering method cannot be expected to

perform satisfactorily. Certainly, one of the most important

requirements is that an a priori estimate be available which permits

the local approximation to be valid initially. If it is impossible

to define an appropriate a priori estimate, then the EKF is doomed

to failure and a global filter is required. For many systems of

interest, this would appear to be an unlikely situation. Frequently,

the signal-to-noise ratio is sufficiently large that a reasonable

estimate can be obtained using only deterministic models. When
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more than one solution is possible, physical consideration any permit

the determination of the only reasonable solution which can then be

used to initiate the EKF. If more than one a priori estimate must

be considered, the a posteriori density will be multimodal so the

EKF cannot be used.

If the a posteriori density can be regarded as unimodal but

non-gaussian, the EKF must produce suboptimal results. Thus, it

may be desirable to utilize local or global procedures which elimi-

nate the gaussian assumption. In many cases, the EKF can be expected

to provide pessimistic results since the gaussian density maximizes

entropy. As long as the residual is forced to be white, the EKF

should produce results that are satisfactory in some ways. More

complicated procedures may provide improvements but this would seem

to be very problem-dependent.

Finally, the signal-to-noise ratio may be so small that linear-

izations provide inadequate approximations with the result that the

EKF produces little data filtering. That is, the divergence control

logic may require past data to be discounted so strongly that only

current data is used in determining the estimate. Then, the estima-

tion error will be comparable or greater than the measurement noise

indicating the lack of any filtering (noise removal) activity. In

this case, global nonlinear filters may be required in order to

extract the maximum information from the data.
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Among the advantages that can result from the use of global

nonlinear filtering are the following:

(a) It is not necessary to have a priori estimates of the state

that are sufficiently accurate to validate the linearization. Thus,

the problem of initializing the filter is eliminated.

(b) Situations in which the a posteriori density is multi-

modal are handled in a straightforward manner. The consideration

of multimodality enters primarily through the definition of the grid

and the choice of estimator criterion.

(c) The elimination of the assumption that the a posteriori

density is gaussian can permit more accurate statistical statements

to be made. A simple example is given in Ref. [19] which demonstrates

the insights possible from knowledge of the a posteriori density.

(d) Calculation of the a posteriori density provides a meaning-

ful reference which can be used to measure the performance of all

suboptimal procedures. The accurate calculation of p(xk/z k) permits

one to more rationally evaluate the effects of the approximations

used in suboptimal estimators. Generally, even suboptimal estimators

approach the optimal response of the global filter after a large

quantity of data has been processed. The difference in transient

response can be determined and can provide a measure of the adequacy

of a particular suboptimal algorithm.
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In the study of nonlinear filtering, it is not surprising to

find that there are few analytical results and closed-form solutions.

Thus, to deal with these problems, it is natural to see a concentra-

tion of effort on the development of computational procedures. In

this sense, the field is similar to the study of nonlinear program-

ming. Unlike the latter, we do not have standard test problems nor

extensive numerical studies of different algorithms which have been

developed for the same general problem. It seems that this is a gap that

must be filled. Several problems that have appeared in the literature and

have been described above can serve as candidates for standard test

problems. Rational criteria for comparing algorithms need to be

established. It should be incumbent upon the proposer of a new algo-

rithm to provide meaningful comparisons of his procedure with existing

algorithms. By this means one can hope to establish situations in

which specific algorithms will have demonstrable advantages.

As nonlinear filtering begins to see practical application, a

wealth of new problems will be uncovered and the research will

progress into new areas. A question which requires immediate con-

sideration arises when we contemplate the basic assumptions implicit

in the Bayesian recursion relations. This solution of the nonlinear

filtering problem supposes that we have a complete probabilistic

description of the system. In practice, one often considers himself

lucky to have information about the second moments. Thus, it is

naive to believe that the probabilistic model is justified.

111 -ORINCON

II



Consequently, it is imperative that the sensitivity to model errors

be examined in considerable detail. On one hand, it might be possible

to reduce the computational burden associated with the current global

filters by exploiting the knowledge that model errors exist. On the

other hand, sensitivity to model errors might indicate the folly of

the Bayesian approach entirely and cause the redirection of research

activities into less model-dependent formulations.
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FIGURE LEGENDS

Figure 1. The true value of one sigma and the Kalman approximation

to it versus z0.

Figure 2. One to four Gaussians in L 2 search fit to a gamma density.

Figure 3. Gaussian sum approximation to uniform density L 2 search fit

2 to 5 terms.

Figure 4. 1, 3, and 5 L 2 search fit approximations to product density.

Figure 5. Gaussian sum approximations of uniform density functions.

Figure 6. 6 and 10 term Gaussian sum theorem fit approximation to a

gamma density.

Figure 7. Measurement density function and approximation.

Figure 8. The passive, bearings-only tracking problem.

Figure 9. Behavior of the a posteriori density-true and

approximate.

Figure 10. Filtering density and approximations. Solid line is true

PDF. Broken line is Gaussian sum, x ... x is second order.

+ .-. + is iterated.

Figure 11. Gaussian sum approximation to filtering density for nonlinear

plant and measurement. Solid line is Gaussian sum PDF.

o ... e is true value of state. 0 -0.2, n - -0.2,

a = 0, and a - 0.05.w v

Figure 12. Filtering density for vector tracking example.
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Figure 13. Relative performance of extended Kalman and Gaussian sum

filters for tracking problem. Broken line denotes Kalman.

Solid line denotes Gaussian sum.
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